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On the thermodynamic stability of bubbles,
immiscible droplets, and cavities

Gerald S. Manning

Nanobubbles filled with air or a variety of pure gases are observed to persist in bulk water for weeks and

months. Nanoemulsions consisting of oil droplets in water are also remarkably stable against

coagulation, with lifetimes up to weeks even if not coated with surfactants. The inverse system of

nanodroplets of water in oil is also accessible for study and application. Voids on the nanoscale are

formed in simulations of water under strong tension and are stable during the time of the simulation.

The stability of these nano-entities is ultimately determined by the molecular-level structure of their

interfaces. However, a thermodynamic theory might also be capable of providing some insight. We

therefore consider spherical gas nanobubbles, immiscible liquid nanodroplets, and nanocavities formed

in water under negative pressure on the same footing, and give a unified thermodynamic analysis of

these systems. In all cases, mechanical equilibrium (local free energy maximum or minimum) is

expressed by the Laplace equation, and thermodynamic stability (local free energy minimum) follows

from the radius dependence of surface tension. All of them would be unstable if their surface tensions

were constant. Data from the literature allow construction of numerical examples for cavities and gas

nanobubbles. Spectroscopic data are cited in support of an interfacial water structure in gas nanobubbles

and water droplets in oil that differ from their flat surface counterparts. The observed longevity of

nanobubbles in particular has been thought to violate fundamental principles of diffusion and solubility.

A close look at the Laplace equation and its derivation shows why this widespread belief is incorrect.

Introduction

The controlled suspension of small particles in liquids has
been the primary focus of colloid science for more than a
century, and with technological advances the nanoscale has
received increasing emphasis. Nanobubbles in water, filled
with air or oxygen for example, have a variety of actual and
potential biomedical, water purification, food production, and
commercial applications.1–3 Water cavitation under negative
pressure is an inherent feature of green plant physiology and
function,4 and the nanoscale void spaces formed in simulations
of strongly stretched water can provide interesting information
about hydrogen-bonded structure in these conditions.5,6 The
properties of nanoemulsions consisting of nanoscale oil droplets
in water with their applications in food and pharmaceutical
products have been extensively reviewed.7 Nanobubbles, emulsions,
and cavities are usually studied as separate fields of scientific
research, but it is desirable from a fundamental point of view to
recognize how they might be related, particularly in regard to their
stability. We therefore give in this paper a unified thermodynamic
analysis of the three systems. The limitations of a thermodynamic

theory are well understood to preclude direct molecular-scale insight
into the interfacial structure underlying stability. Nonetheless, our
results may be helpful in focusing attention on what these systems
may have in common and how they differ.

Suspensions of gas-filled nanobubbles in water and other
solvents can be prepared by a variety of techniques and are
observed to be stable over long periods of time.1,3,8–12 Although
their numbers eventually dwindle, they persist for days, weeks
or months, even up to a year. A fundamental experimental
study of nitrogen nanobubbles in water prepared under atmo-
spheric conditions was reported by Ohgaki et al.8 The average
radius of the bubbles was 50 nm, and their lifetimes were up to
two weeks. The measured internal pressure of the nitrogen
bubbles was about 60 atm. The Raman peaks of gas-phase
nitrogen and nitrogen molecules homogeneously dissolved in
water can be distinguished. The Raman spectrum of nitrogen in
the bubble/water system was found to be dominated by the gas-
phase peak, indicating that ‘‘almost no nitrogen molecules are
dissolved homogeneously in the aqueous solution, and that the
vast majority are present in the form of nitrogen nanobubbles’’.

The pressure of the nitrogen gas inside these small bubbles
is much larger than atmospheric. In this situation the bubbles
should disappear in a fraction of a second, as the nitrogen gas
diffuses outward according to the expertly solved moving-boundary
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problem formulated by Epstein and Plesset in their influential
1950 paper.1,13 The observed longevity of the nitrogen bubbles,
measured in weeks, stands in stark contrast.

The stability of nanobubbles has indeed long been considered
as an apparent violation of classical theory. In their interesting
article, ‘‘A History of Nanobubbles’’, Alheshibri et al. present a
Laplace Pressure Bubble Catastrophe as creating thermodynamic
instability of nanobubbles.1 The basis for their thinking is the
independent discovery by Young and Laplace that surface tension
causes the pressure inside a spherical bubble to be greater than
outside.14,15 Henry’s law for the solubility of the gas in the
exterior aqueous phase in response to the higher pressure inside
the bubble is then reasoned to create a Laplace Pressure
Catastrophe that uncontrollably destabilizes a bubble, causing
it to grow by inward diffusion until it is removed from the
solution through buoyancy, or to lose all of its gas molecules
by outward diffusion and thereby shrink from existence. The
Laplace Pressure Catastrophe is not observed, however, leading
the authors of the History to wonder if an emphasis on solubility
and diffusion ‘‘has somehow clouded our understanding of nano-
bubbles’’. We will agree that it has.

We begin this paper with a statement of the Laplace equation
and Rowlinson and Widom’s insightful derivation of it.14 A clear
understanding of both leads to recognition that neither Epstein–
Plesset diffusion nor the Laplace Pressure Bubble Catastrophe
have a physical basis, so it is not surprising that neither of them
is observed to occur. Neither provides a basis for an expectation
that a nanobubble will be quickly extinguished.

To gain further insight, we proceed to a unified treatment of
the mechanical equilibrium and thermodynamic stability of
bubbles, immiscible droplets, and cavities. These spherical
objects are immersed in pure water. They exist in an ideal
limiting condition as closed, that is, as containing a constant
number of molecules (for the cavity, the constant number is
zero). We give some examples of what we have in mind. Take a
droplet of oil in water. In this case, our understanding is not
clouded, because ‘‘oil and water do not mix’’, and the stability
of an oil droplet in pure water (or a water droplet in oil) can be
considered.7,16,17

Cavities in a liquid provide another related example. Water
can be literally torn apart when placed under sufficiently great
tension (negative pressure), and quasi-spherical cavities have
been observed in simulations of water under tension.5,6 We
take seriously the description of the cavity as a void space by
assuming its interior to be empty (in their analysis Min and
Berkowitz neglect the number of water molecules in the
cavity as well as the pressure inside as ‘‘very small’’, while
Menzl et al. make the still stronger statement that their cavities
are ‘‘essentially voids [that] rarely contain vapor molecules’’).
Gas-filled bubbles provide the third example. As mentioned,
the ‘‘vast majority’’ of nitrogen molecules in the nitrogen
nanobubble system studied by Ohgaki et al. were contained
in the bubbles and ‘‘almost none’’ in the aqueous phase. We
therefore wish to study a gas-filled nanobubble situated in pure
water containing no gas molecules, in other words, when the
gas has no significant solubility in water.

Our analysis proceeds under the assumptions of macro-
scopic thermodynamics, that is, in the thermodynamic limit,
and for an ideally sharp spherical interface. We give a direct
proof that all the systems under study are unstable in this
context if the surface tension is assumed independent of sphere
radius. But all of these systems have been observed to be stable
(more precisely, metastable) for varying but significantly long
periods of time. We find that some thermodynamic models for
a radius-dependent surface tension support stability. To our
knowledge, this study is the first to demonstrate that stability of
these nanospherical systems is consistent with the macroscopic
thermodynamic limit.

There is another aspect to the systems under discussion.
The surfaces of gas nanobubbles are widely thought to be
electrostatically charged, as suggested by measurements of
‘‘zeta potentials’’.9–11 We will express skepticism, but we do
ask with others9,11,18 whether a surface charge can in principle
contribute toward stabilization of the bubble size. Among our
results is a calculation based on the Born energy indicating that
it can, but that the effect may be much too small by orders of
magnitude to account for nanobubble stability.

The Laplace equation

Certainly any discussion of bubbles or droplets must assign a
principal role to the Laplace equation for the pressure difference
DP (inside minus outside) across the surface of a spherical
phase of radius R,

DP ¼ 2gðRÞ
R

(1)

where g(R) is the surface tension, taken here for generality and
subsequent use as inherently dependent on bubble size. The
surface tension is understood to be positive (work is required to
create a surface),15 so DP is also positive. The pressure of the
material inside the bubble is greater than the pressure of the
aqueous phase outside. If the ‘‘bubble’’ is an empty cavity,
the pressure inside is zero, and the pressure of the water outside
is negative. To avoid confusion with some aspects of the current
theoretical literature, we specify that by ‘‘radius’’ we will always
mean the positive distance between the center of the sphere and
the surface.

The derivation of this equation can be so brief, but the
physical insight it provides so important, that we wish to
reproduce it here, and we can do no better than an essentially
direct reading of the presentation of Rowlinson and Widom.14

Their derivation for a bubble is also applicable to an immiscible
droplet or a spherical cavity. We have then a spherical bubble of
radius R within the body of a liquid. The tension in the surface
will make the bubble collapse unless the pressure inside
exceeds that outside by, say, DP. The work of an infinitesimal
change in R vanishes at equilibrium, so DPdV equals gdA, where
dV and dA are the increases in volume and surface area of the
bubble. Since V = (4/3)pR3, and A = 4pR2, we have dV/dA = R/2,
and so DP = 2g/R, the Laplace equation.
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From the derivation we see that the Laplace equation is a
condition for mechanical equilibrium. It states that the net
radially directed force on the bubble, as the resultant of
pressure and resistance of the surface to stretching, must then
vanish. The infinitesimal change in R is not brought about by a
flow of gas molecules across the bubble surface. Further,
the Laplace equation says nothing about the thermodynamic
stability of the mechanical equilibrium. It does not distinguish
between a maximum or minimum of free energy, only that the
free energy (work) is at an extremum, where the forces involved
(pressure and restoring surface tension) are exactly in balance.

We see also that at the Laplace equilibrium state there is a
discontinuity of pressure across the bubble surface. If Pb is the
pressure within the bubble, and Pw the lower pressure of
the aqueous phase, the pressure discontinuously drops by the
amount DP = Pb � Pw as we proceed from just inside the bubble
to just outside. The reason for the pressure drop is the
convexity of the spherical surface (dV/dA = R/2 4 0), which
causes the tension in the surface to push on the inside of the
bubble while pulling on the outside.

For the example of the nitrogen nanobubble, the pressure
discontinuity has an important implication. If the pressure is
discontinuous at the bubble surface, the concentration of the
nitrogen molecules cannot be continuous there. It must also be
discontinuous, contrary to the assumption of local equilibrium of
nitrogen molecules at the surface that is a boundary condition
essential to the Epstein–Plesset diffusion model.1,13 The pressure
discontinuity also means that the pressure Pb in the interior of
the bubble, and therefore the pressure acting on the surface from
inside, cannot be taken as a pressure exerted on the water
immediately surrounding the bubble from outside, as assumed
in the formulation of the Laplace Pressure Bubble Catastrophe.1

The concentration of nitrogen molecules in the water just outside
the bubble is not equal to the Henry’s law saturation concen-
tration at Pb. It is equal to a much lower concentration corres-
ponding to atmospheric conditions, just as everywhere else in the
bulk aqueous phase. Therefore, since there is no gradient for
diffusion outside the bubble, there is no diffusion. And since the
solubility of nitrogen in the water just outside the bubble is not
governed by the pressure inside the bubble, there is no Laplace
pressure catastrophe.

A sharper understanding of the Laplace equation and the
physics underlying it has thus removed the mystery from
nanobubble longevity. The gas in the nanobubble exists in a state
analogous to that of solute in an ordinary osmotic pressure
arrangement at equilibrium, where escape of the solute molecules
is prevented by a semi-permeable membrane. In an equilibrated
bubble system, the spherical surface itself plays the role of the
membrane, its tension having adjusted upward just sufficiently to
check escape of the gas.

We note that the issue of thermodynamic catastrophe
apparently does not exist in the field of nanoemulsions, presumably
because oil and water have such a high degree of immiscibility. But
confusion in a lower key about the role of Laplace pressure is there
also.7 Nonvanishing solubility of the oil molecules in water is said to
implicate oil molecule diffusion along a gradient of oil molecules

from just outside small oil droplets with high Laplace pressure to
just outside larger oil droplets with lower Laplace pressure, resulting
in further growth of the latter at the expense of the former. But for
the same reasons as given in this section, the Laplace pressure
difference between small and large droplets does not cause a
solute diffusion gradient in the surrounding liquid. Coagulation
of emulsions does not involve Laplace pressure.

Thermodynamic stability analysis

We return to the first point in the previous section about the
physics underlying the Laplace equation, that it says nothing
about the stability of the mechanically equilibrated state represented
by it. The Laplace equation generalizes the simple mechanical
equilibrium condition DP = 0 for a planar interface between two
phases.15,19 For a planar surface the equality of pressures on both
sides means that the force exerted by one phase on the second must
be equal to the force exerted by the second phase on the first, if the
system is to be at equilibrium. Otherwise, the phase at higher
pressure will expand at the expense of the one with lower pressure.
Mechanical equilibrium at a planar interface between two
phases does not imply by itself that the two-phase system is
thermodynamically stable. For stability of the equilibrium state,
a second condition must apply; the isothermal compressibilities
of both phases must be positive.19

Analogously, for a single phase to be mechanically equilibrated,
its pressure must be uniform throughout, but this equilibrium
state is stable only if the compressibility is positive.19 A positive
compressibility of a substance means that its volume decreases if
the pressure on it increases. Since no known materials in nature
behave otherwise (if one did, it would be unstable, and would
long ago have disappeared), there is a universally intuitive
understanding of equilibration and stability of planar interfaces
that may not extend to curved ones. The following analysis of
closed bubbles is aimed at partial correction of this situation.

We have a large body of a liquid, for example water, with
volume Vw containing a constant number Nw of liquid molecules.
Immersed in this liquid is a spherical phase b that we call a
bubble (even if it contains an immiscible liquid). The volume of
the bubble, Vb, is (4/3)pR3, where R is the radius of the sphere. We
define ‘‘radius’’ in the usual way, as the positive distance between
the center of the sphere and the surface, so that the volume of the
bubble also has its usual meaning as a positive quantity. The
bubble contains a constant number of molecules Nb (equal to
zero if the bubble is an empty void). Examples were given in the
Introduction of physical systems that this model might be
expected to describe reasonably accurately. An example to which
the model does not apply would be a liquid water droplet
surrounded by its vapor in thermodynamic equilibrium (equal
chemical potentials), since in that case Nb and Nw are not constant.

The two phases, w and b, are separated by an interface,
which we represent as an ideal two-dimensional surface con-
taining no molecules. We realize that ‘‘such a division of the
system into two physical subsystems. . . is not evident unless
the interface is perfectly sharp, which is never the case,’’20

and that an extensive theoretical literature, beginning with
Gibbs himself,14 seeks ‘‘to avoid this problem.’’ Nonetheless we
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persist for present purposes with exactly such an idealized inter-
face, while avoiding any attempt to describe its actual physical
structure either on a Gibbsian local thermodynamic level or
atomistically (but see Discussion).

Our ideal surface is endowed with a tension that is under-
stood to resist expansion, so to minimize its area A, the surface
takes a spherical shape with A = 4pR2. The total number of
molecules N = Nw + Nb is constant since both Nb and Nw are
constant. The total volume of the system is V = Vw + Vb, and V is
held constant while the component volumes can vary. The
respective pressures are Pw and Pb (for the example of an empty
cavity Pb = 0, and Pw is negative to achieve mechanical equilibrium).
The entire system is isothermal with common temperature T held
constant.

We analyze this model in the framework of ordinary macro-
scopic thermodynamics. With the variables T, V, and N held
constant, the natural thermodynamic potential is the Helmholtz
free energy F. It is the sum of the free energies of the two phases
plus the surface free energy. The relevant expression for its
differential is,

dF = �PwdVw � PbdVb + g(R)dA (2)

where g(R) is the surface tension as possibly dependent on the
radius of the spherical phase. The entropy terms proportional to
dT are omitted, since dT = 0. Similarly, the chemical potential
terms proportional to dNi are omitted, since dNi = 0 for both
phases. Since V is constant, dVw = �dVb, and we have dF =
�DPdVb + g(R)dA, where DP = Pb � Pw. The expressions for the
spherical volume and surface area in terms of the radius R
then give,

dF = [�4pR2DP + 8pRg(R)]dR (3)

We can read off the first derivative,

dF/dR = �4pR2DP + 8pRg(R) (4)

We have left the pressure difference DP completely unspecified.
But we will also need the second derivative with DP held
constant,

d2F/dR2 = 8p[�RDP + g(R) + Rdg/dR] (5)

At this point, DP is an arbitrary constant pressure difference,
independent of R. Now we ask whether or not, as we scan
through values of R, we will find any radii that characterize
spherical bubbles mechanically equilibrated with this fixed DP.

To answer this question, dF/dR is set to zero. The roots R of
the equation dF/dR = 0 are the values of R corresponding to a
mechanical force �dF/dR that everywhere vanishes (this is the
meaning of mechanical equilibrium). From eqn (4), we can
write the mechanical equilibrium condition dF/dR = 0 in the
form of the Laplace equation,

R ¼ 2gðRÞ
DP

(6)

Notice that this equation can have many solutions R, depending
on the nature of the radius dependence of the surface tension. A
physical requirement is that the surface tension g(R) be positive.

Then, only for positive fixed values of DP (pressure inside
bubble greater than outside) can we possibly find radii that
are realistically positive.

For values of R satisfying this equilibrium condition, but
only for such values, the second derivative equals,

(1/8p)(d2F/dR2) = �g(R) + R(dg/dR) (7)

For the Laplace equilibrium to be stable the right-hand side
must be positive, for only then is the free energy at a minimum.
If the free energy at a value of R corresponding to mechanical
equilibrium is at a maximum, the equilibrium is thermodynamically
unstable, and thermal fluctuations immediately destroy it. Noting
the minus sign, we write the stability condition as,

g(R) � R(dg/dR) o 0 (8)

where it is understood that the left-hand side is evaluated at a
value of R corresponding to a state of mechanical equilibrium
(i.e., a root R of the Laplace eqn (6)).

Surface tension: special cases
Constant surface tension

We consider a variety of special cases for the radius dependence
of the surface tension g(R), beginning with g = constant. For this
case, there is only one mechanically equilibrated radius R =
2g/DP, that is, just one solution of eqn (6). The stability condition,
eqn (8), then reduces to g o 0. Stability would therefore require a
negative surface tension. But the physical reality is that g is
positive. Therefore, the free energy is at a maximum, and the
bubble is unstable if the surface tension is constant.

In a thermodynamic theory the underlying physics can
remain opaque. It may be useful at this point to translate some
of the calculations into words. We recall first why the surface
tension is a positive quantity. If a surface separating two phases
had a negative surface tension, the area of the surface would
spontaneously increase without limit until the entire system
consisted only of surface, and the two phases would cease to
exist separately.15 Next, we consider the net force exerted by the
surroundings of a bubble, including the surface, on the interior
of the bubble. If this net force is directed inwards, the bubble
shrinks. If it is directed outwards, the bubble expands. If it
vanishes, the bubble is in a state of mechanical equilibrium.
The Laplace equation, eqn (6), is the condition for vanishing
net force. From this condition, we recognize that the net zero
force is the resultant of two competing tendencies. The positive
surface tension g tends to minimize the surface area, and the
bubble tends to contract. But the positive surface tension also
creates a positive Laplace pressure difference DP; the pressure
inside the bubble is greater than the pressure outside. The
pressure–volume work therefore tends to expand the sphere. At
a radius R corresponding to mechanical equilibrium, these two
tendencies are in exact balance. But under the assumption of a
constant surface tension, the pressure–volume work dominates
when the radius is displaced slightly outwards, and then the
sphere spontaneously expands further. When the radius is
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displaced slightly inwards, the tendency toward minimal surface
area dominates, and the sphere contracts further. This, in words,
is the unstable response in the face of a constant surface tension
to a small fluctuation away from mechanical equilibrium.

The failure of the stability condition go 0 tells us that when
the positive surface tension coefficient g is assumed independent
of radius, the unstable state of the bubble and its surrounding
liquid is entirely determined by the surface tension itself. It is
reasonable to ask whether a radius dependence of the surface
tension might stabilize the system. Stabilization might occur if an
increase of surface area (increased radius) brings into play
stronger surface forces tending to contract the bubble, in other
words, if the surface tension g increases when R increases. We
therefore proceed to consideration of models for a radius
dependence of surface tension, while not departing from a
‘‘perfectly sharp’’ surface. We begin with a simple linear depen-
dence on R. Then we consider the Tolman approximation for g(R),
purely as a formal expression of a dependence on R, and not as a
theory attempting to explain the dependence on the basis of a
departure from a perfectly sharp surface.21 The Tolman equation is
often linearized, and we proceed to consider the linear form.
Finally, we consider the radius dependence conferred on spherical
surface tension if the sphere is charged. From a purely theoretical
perspective, this case is interesting, because it explicitly exhibits a
perfectly sharp interface that nonetheless possesses a physically
realistic radius dependence of its surface tension. Discussion of
the results and their placement in the context of the literature is
deferred to the Discussion section.

Linear dependence on size

We investigate whether stability can be induced for some
radius inside a range of possible radii where the dependence
of surface tension on radius is linear,

g(R) = a + bR (9)

with a and b constant coefficients. A physically realistic theory using
this ansatz for g(R) must be consistent with positive values for three
quantities: the spherical bubble radius R, the mechanically equili-
brated pressure difference DP, and the surface tension g(R) itself.
With g(R) = a + bR, the requirement for stability, eqn (8), reduces to
a o 0 regardless of the value of R, so in the expression for g(R) we
take the coefficient a to be negative. Then it is necessary for a
positive value of g(R) that the coefficient b be positive.

The requirement for mechanical equilibrium is the Laplace
eqn (6). Substituting g(R) = a + bR into this equation, we easily
extract the only root R of this equation,

R ¼ 2a
DP� 2b

(10)

For R to be positive, DP must be less than 2b, since ao 0 and b4 0.
If we choose a fixed DP 4 0, then this DP is restricted to the interval
0 o DP o 2b. Calculating g(R) = a + bR with eqn (10) for R, we get

gðRÞ ¼ aDP
DP� 2b

(11)

which is positive, since a o 0 and 0 o DP o 2b.

We conclude that a mechanically equilibrated and thermo-
dynamically stable spherical bubble of radius R given by eqn (10)
is consistent with a size-dependent surface tension g(R) = a + bR,
a o 0, b 4 0, and a positive pressure difference DP o 2b. It is
understood that the expression for g(R) need not hold outside
some range of R that includes the stable radius.

The Tolman dependence

The Tolman expression is,21

gðRÞ ¼ g0
1þ 2d=R

(12)

where g0 and d are constants, the latter with units of length.
Again, we assume that this form holds within some range of R
values and ask if there are any stable radii in this range. With
this expression for g(R) we find a single positive root of the

Laplace eqn (6), R ¼ 2
g0
DP
� d

� �
if the length d is chosen to be

less than g0/DP. A bubble with this radius is mechanically
equilibrated, but is it stable? We compute from eqn (12),

g� R
dg
dR
¼ g0

1þ 2d
R

� �2
(13)

which is positive for any radius and any value of d. Therefore
the stability condition, eqn (8), is never satisfied, and a bubble
in Laplace equilibrium but with a Tolman surface tension is
always unstable.

Linear dependence on inverse radius

Next we examine a linear version of eqn (12),

gðRÞ ¼ g0 1� 2d
R

� �
(14)

The stability requirement, eqn (8), reduces to,

R o 4d (15)

which in particular requires d 4 0.
The requirement for mechanical equilibrium, whether

stable or not, is the Laplace eqn (6),

R ¼ 2g0
DP

1� 2d
R

� �
(16)

which expands into a quadratic equation for the variable R,

R2 � R0R + 2dR0 = 0 (17)

In writing this equation, we have presented a mechanically
equilibrated radius R0 for a hypothetical spherical phase with
constant surface tension g0, i.e., R0 is defined by a Laplace
formula,

R0 ¼
2g0
DP

(18)

We can write explicit formulas for the two solutions of
eqn (17), but a direct analysis of the polynomial f (R) =
R2 � R0R + 2dR0 is more instructive. We see directly that
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f (R) 4 0 for all values of R r 0, and from the first two
derivatives of f (R), we conclude that there is a single extremum,

a minimum, at R = (1/2)R0, where f ¼ R0 2d� 1

4
R0

� �
. So for

d4 (1/8)R0, f (R) is positive for all R, and the two roots must be a
pair of complex conjugates, that is, there are no equilibrated
spheres of any radius given this surface tension. But if
d o (1/8)R0, then f (R) is negative at its minimum, and there
are two positive real roots R+ 4 (1/2)R0, and R� o (1/2)R0.

The radius R+ corresponds to an equilibrated but unstable
sphere, since R+ 4 (1/2)R0 4 (1/2)(8d) = 4d, a violation of
the stability condition eqn (8). But then this solution R+ of the
Laplace equilibrium condition represents a maximum of free
energy, and so the other root R� is at a free energy minimum,
since there are only two solutions of the Laplace equation
(it cannot be a maximum, since then there would be two
maxima, which would have to be separated by a minimum,
hence three solutions of the Laplace equation, but there are only
two). Since R� is then a stable radius, it must be less than 4d, the
stability condition. But it must also be greater than 2d to meet
the requirement of a positive surface tension. Therefore there is
a stable radius R� somewhere in the interval 2d o R� o 4d.

Dependence on electrostatic charge

It is known that surface charge contributes to the surface
tension of a sphere in a radius-dependent manner.22 A derivation
of the relevant expression not having been provided, we give a
short one here (with no claim to originality23). The electrostatic
free energy of a sphere with surface charge can be estimated with
the Born energy,24

Fel ¼
n2e2

8pe0eR
(19)

where n is the number of elementary charges e distributed
uniformly on the sphere, e0 is the vacuum permittivity, and e is
the dielectric constant of the surrounding fluid. Assuming that n
is constant, we can differentiate with respect to radius R, and
then use surface area A = 4pR2 to get dR = dA/8pR. We find,

dFel ¼ �
n2e2

64p2e0eR3
dA (20)

The coefficient of dA is an electrostatic contribution gel to the
surface tension.22 It is negative, implying that the electrostatic
repulsions among surface charges lower the surface tension, thus
favoring expansion of the bubble, as the charges tend to be as far
apart as possible.

We can write g(R) = g0 + gel(R) in a form similar to eqn (14),
but with the electrostatic third-order curvature term instead of
the linear one. That is,

gðRÞ ¼ g0 1� 2del3

R3

� �
(21)

where

del3 ¼
n2e2

128p2e0eg0
(22)

An analysis similar to the one for linear dependence on
curvature goes through, concluding that there is a stable radius
R, and providing upper and lower bounds for it in terms of the
electrostatic quantities appearing in del, 21/3del o R o 2del.

Discussion

The observed stability of gas nanobubbles has long been
considered puzzling, since the diffusion calculation of Epstein
and Plesset suggests that small bubbles should disappear in a
fraction of a second.1,13 In the first part of this paper, we have
shown why the assumption of local gas equilibrium across the
boundary of the bubble, crucial to the diffusion model, violates
the fundamental physical principles underlying the Laplace
equation for mechanical equilibrium of a liquid or gas phase
surrounded by another fluid phase. For the same reason,
Henry’s law with a pressure equal to the pressure of the gas inside
the bubble cannot be applied to calculate the gas concentration
just outside the bubble, thereby invalidating the analysis of a
‘‘Laplace Pressure Bubble Catastrophe’’, a catastrophe that has
never been observed because it does not exist.

In the second part of the paper, we replaced one puzzle with
another. If the surface tension is taken as constant, that
is, independent of bubble, droplet, or cavity radius, then a
mechanically equilibrated spherical phase (Laplace’s equation)
is nonetheless thermodynamically unstable. It is located at a
free energy maximum, not a minimum. Then the quandary of
observed bubble longevity would persist, not for reasons based
on a misunderstanding of the meaning of the Laplace equation,
but instead because a constant surface tension cannot balance
a mechanically equilibrated bubble radius in a stable manner.
An obvious approach toward resolution of a puzzle set up by an
assumption of constant surface tension is to abandon the
assumption and see what happens if the surface tension of a
bubble depends significantly on bubble radius.

In our theoretical considerations, we used the conventional
definition of surface tension as the coefficient g in the expres-
sion gdA for the infinitesimal increment of work required to
increase surface area A by the infinitesimal amount dA.15 There
are other ways to define surface tension.14,20 Using the different
symbol G for it to avoid confusion, we may say that incremental
surface work is given by d(GA) = GdA + AdG, where dG in the
additional term AdG represents the effect of a postulated
variation of surface tension as one proceeds continuously in a
normal direction through an interface endowed with three-
dimensional structure. This formulation leads to a modified
Laplace equation for a spherical interface. We do not use G in
our analysis, as its physical meaningfulness is unclear.

The expression gdA for the incremental work of creating
surface, which is ‘‘obviously proportional to dA’’,15 is a clear analogy
for surfaces to bulk work �PdV, �g playing the role of surface
pressure. Its use does imply a commitment to a perfectly sharp,
ideally two-dimensional, surface. And just as P may, and in general
does, depend on volume V, so g may depend on surface area A, and
therefore on radius R for a spherical surface with A = 4pR2.
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We proceeded to examine four possibilities for a radius-
dependent surface tension, and we will discuss each of them
here in turn. We first looked at a possible effect of bubble size
by assuming a linear dependence of g(R) on R, g(R) = a + bR.
Physical realism dictates that such a dependence could apply, if
at all, inside a restricted range of R values short of infinity. We
found that droplet, cavity, or bubble stability is consistent with
such radius dependence if the intercept a is negative, while the
slope b is positive. A negative value of a violates no physical
principles. A sphere of small radius R o b/|a| would expand
spontaneously but only until the crossover to positive values of
surface tension. The value of the stable radius is given by eqn (10),
but we are unable to give a direct numerical illustration because
knowledge of the values of surface tension and stable radius from
literature data does not lead to values of a and b (the determinant
of coefficients in eqn (9) and (10) vanishes). However, we will find a
way to circumvent this problem (see below).

We considered a radius dependence conforming to a suggestion
of Tolman, eqn (12). We used the Tolman equation purely as a
formal expression for a radius dependence, and not as a theory of
surface tension. In our use, the surface is perfectly sharp. As a
theory, Tolman derived his expression from the efforts of Gibbs to
describe an actual physical interface as an object of tangible, if
narrow, width. If the surface tension is then dependent on where it
is measured within this thin layer of R values, it emerges as
dependent on R. It is for this reason that the Tolman expression,
as a theory, leads to a dependence on curvature 1/R. For this reason,
also, the Tolman length d, as a theoretical object, is tiny, since it is a
measure of the width of the surface. The dependence on radius
that is our present subject arises from a qualitatively different
perspective. There is nothing fundamentally inconsistent in
defining the surface tension of a perfectly sharp interface as
possessing a dependence on radius, and we did so. Of course a
physical interpretation is desirable, and forthcoming below.

Today the Tolman expression, considered as a theory, might
be regarded as primarily of historical interest, as the higher-
order terms implicit in it beyond linear have been regarded as
doubtful, including by Tolman himself.20,21 Nonetheless it
continues to be used,25,26 for example, by Menzl et al.6 to fit
their simulated data on cavitation. We found that it leads to an
unstable cavity or bubble of any radius, regardless of the value
of the Tolman length d, positive or negative. The Tolman
approximation, like the assumption of a constant surface
tension, is inconsistent with the observed stability of cavities
and gas nanobubbles, at least in the context of macroscopic
thermodynamics and a perfectly sharp interface.

We proceeded to look at a linearized form of the Tolman
approximation, eqn (14).5,20,27–31 We found that the stability con-
dition, eqn (15), requires a positive Tolman length. The cavities in
water under negative pressure observed in simulations by Min and
Berkowitz5 were on the size scale of 1 nm. Values of simulated
cavity radius were not directly reported, presumably because the
observed cavities are not perfect spheres, but a numerical fit using
the linearized Tolman approximation yielded an average value
R = 1.11 nm and an average d = 0.15 nm. Our stability analysis
locates a stable radius somewhere in the interval 2d to 4d, that is,

between 0.30 nm and 0.60 nm in this case, somewhat smaller than
the values reported by Min and Berkowitz. A representative cavity
radius from Fig. 2 of Menzl et al.6 is R = 1 nm, and their reported
value of d is 0.195 nm. Values of R in the interval 2d to 4d are in the
range 0.4 nm to 0.8 nm, somewhat less than the representative
R value (but Menzl et al. also find cavities with radii in this range,
see their Fig. 2).

If we apply our prediction from the assumed linear curvature
dependence of surface tension to nitrogen nanobubbles of
50 nm radius, we find from the interval 2d o R o 4d in which
this stable radius is located that d is somewhere between 13 and
25 nm. The stable bulk nitrogen nanobubbles generated in
water in the experiments of Ohgaki et al.8 were typically of
50 nm radius, 6 MPa internal pressure (about 60 atm), and
surface tension about twice the familiar flat open surface value
0.072 J m�2 for water. The reader is referred to the experimental
section of the original paper for methods and procedures. With
an intermediate choice d = 17 nm, the following statement is
correct, that the expression g(R)/g0 = 1 � (34/R), taken in the
neighborhood of R = 50 nm with g0 = 0.45 J m�2, is consistent
with the reported experimental data. Note that when R is set
equal to 50 nm in this expression, the value it gives for g(R) is
0.144 J m�2, about twice the flat air/water value, as reported by
the authors.

The representation of the data just given is not unique. If we
linearize 1/R around some fixed value Rs (i.e., R�1 = Rs

�1[2 �
(R/Rs)] from a first-order Taylor expansion), use the result in
eqn (14), and then compare with g(R) = a + bR, we can identify
a/g0 = 1 � (4d/Rs), and b/g0 = 2d/Rs

2. Note that b4 0, and if Rs is
chosen as a stable radius, then a o 0 since Rs o 4d. Using
d = 17 nm, Rs = 50 nm, we find that the linear expression
g(R)/g0 = �0.36 + 0.0136R, g0 same as above, also represents the
data of Ohgaki et al. in the neighborhood of R = 50 nm.

The values of d found here to stabilize the cavity and
nitrogen nanobubble are quite different. We do not believe
that the hydrogen-bonded water network surrounding a 1 nm
void in water stabilized by 1000 atm negative pressure, on the
one hand, and a 50 nm bubble containing gas at 60 atm in
water at 1 atm, on the other, must be similar, and must be
characterized by similar values of d. In their paper Ohgaki et al.
presented spectroscopic evidence based on the infrared stretching
frequency of the intramolecular OH bond that ‘‘the interface of
nanobubbles consists of hard hydrogen bonds that are similar to
the hydrogen bonds found in ice and gas hydrates’’.8 An inter-
pretation of the spectroscopic data of Ohgaki et al. might be that
the interface of a 60 atm nitrogen nanobubble immersed in water,
consisting as it must of some mixture of nitrogen and water
molecules, features a correlated collection of imperfect clathrate-
like cage structures surrounding individual nitrogen molecules,
pairs of gas molecules, triples, etc.

Zdrali et al.16 have reported on an experimental study of
nanoemulsions in water, consisting of droplets of hexadecane
stabilized against coagulation in water by charged and uncharged
sufactants, or, for some measurements, even in the absence of
surfactants. The pure oil droplets in water were stable for a few
weeks (private communication). The radii of these droplets are
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similar to the radii of the nitrogen bubbles studied by Ohgaki
et al. In the same laboratory, Smolentsev et al.17 conducted a
spectroscopic study of radius 100 nm water droplets in oil. Their
conclusion, from a method giving spectra entirely from the sur-
face region of a few molecular layers thick, is that ‘‘the water
molecules of the water droplet/hydrophobic interface appear to be
much more structured than the water molecules at a planar water/
air or water/hexane interface’’. Again, we do not wish to
bowdlerize these data with a single quotation, and the reader
is encouraged to study the original source. The authors gave a
tentative interpretation of their results in terms of the hydrogen-
bonded structuring of water molecules around small hydrophobic
protrusions into the water droplet interface.

Surface charge contributes to surface tension, and we con-
cluded from a stability analysis of the electrostatic third-order
curvature dependence, eqn (21), that a stable radius exists
somewhere in the interval 21/3del o R o 2del, where del is a
length given by eqn (22). An attempt at numerical analysis (not
shown) suggests that the stable radius is too small by orders of
magnitude to account for any bubble remotely approaching
50 nm. However, the numerical estimate is rough, and we
prefer in the state of present knowledge to leave a charge effect
as of possible significance.

In this Discussion section we would like to express an opinion
that the evidence for the existence of significant surface charge
on gas nanobubbles in pure water, whatever might be its origin,32

is unconvincing. It is taken for granted that measured values of
negative ‘‘zeta potentials’’ constitute prima facie proof of a
negatively charged bubble. We feel it important to emphasize
that black box instruments purporting to display values of surface
potentials do not measure potentials. They measure drift velocities
(mobilities) in an applied external electric field. The species that we
know will respond to an electric field in a system of nominally pure
water containing a bubble and dissolved CO2 are the positive H+

and negative OH� and bicarbonate ions, along with possible trace
amounts of charged impurities.33 Asymmetries in the physical
properties of these aqueous ionic species might impart asymmetries
of momentum exchanges that could cause the bubble to drift even if
its surface is uncharged. Such effects would disappear once the
electric field is removed. This author does not know how to
construct what might be a complicated hydrodynamic theory for
such eventualities, but he does remain skeptical of the existence
of charge on the surface of nanobubbles based only on manu-
facturers’ claims for zeta potentials.

The assumption that the surface of nanobubbles bears an
electrostatic charge has led to peculiar theoretical considerations.
For example, the observed stability with respect to size of these
bubbles has been suggested as due to the creation of ‘‘electrostatic
pressure’’, which, acting radially inward, balances the outward
Laplace pressure.9 We have explained why the Laplace pressure
does not need balancing. The Laplace equation by itself is the
expression of overall force balance. And of course surface charge
would produce a force acting radially outward. Another idea11 is
that adsorbed charge can compensate the surface tension arising
from nonelectrostatic cohesive forces, rendering the pressure
inside a nanobubble equal to the ambient pressure and the

Laplace equation entirely inapplicable to nanobubbles. This
conjecture is contrary to the data of Ohgaki et al.8 A theoretical
paper18 reporting a stable minimum of Gibbs free energy caused
by electrostatics begins with a radius-dependent integral expres-
sion G for the free energy, which is incorrect because it is not what
one obtains with integration of dG containing radius-dependent
Laplace and electrostatic terms. Moreover, the displayed electro-
static terms in G and the pressure difference DP are mutually
inconsistent. The authors then complete their cycle of errors with
the claim that the equilibrium pressure inside the nanobubble
equals the ambient 1 atm pressure, incorrectly invoking Henry’s
law and flouting the Laplace equation.

One reason motivating many workers in this field to emphasize
a surface charge on nanobubbles is that it provides a plausible
explanation for the observed stability of nanobubbles toward
coalescence into larger bubbles that would quickly disappear by
buoyancy. Faced with a choice of conjectures, this author prefers
another possibility. A collection of discrete nanobubbles does not
coalesce into one large bubble, because if it did, the larger bubble
might possess a radius in a range where the surface tension is
constant. This large bubble would then be unstable and imme-
diately dissociate back into smaller bubbles stabilized by radii-
dependent surface tensions.
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